(本小题共14分)已知定义在上的函数(1)求证:存在唯一的零点,且零点属于(3,4);(2)若,且对任意的1恒成立,求的最大值.
已知关于x,y的方程C:.(1)当m为何值时,方程C表示圆.(2)若圆C与直线l:x+2y-4=0相交于M,N两点,且MN=,求m的值.
在长方体中,=,=1,(1)与平面所成角的大小;(2)平面与平面所成二面角的正弦值
(1)已知是正常数,,,求证:,指出等号成立的条件; (2)利用(1)的结论求函数()的最小值,指出取最小值时 的值.
已知点P(2,0)及圆C:x2+y2-6x+4y+4=0.(1)若直线l过点P且与圆心C的距离为1,求直线l的方程.(2)设过点P的直线l1与圆C交于M,N两点,当|MN|=4时,求以线段MN为直径的圆Q的方程.(3)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
如图所示,正方形和矩形所在平面相互垂直,是的中点.(1)求证:;(2)若直线与平面成45o角,求异面直线与所成角的余弦值.