S n 为等差数列 { a n } 的前n项和,且 a n = 1 , S 7 = 28 . 记 b n = [ lg a n ] ,其中 [ x ] 表示不超过x的最大整数,如 [ 0 . 9 ] =0 , [ lg 99 ] =1 .
(1)求 b 1 , b 11 , b 101 ;
(2)求数列 { b n } 的前1 000项和.
在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且.(Ⅰ)求证:直线ER与GR′的交点P在椭圆:+=1上;(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.
2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如下表):
(I)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.
如图,矩形,满足在上,在上,且∥∥,,,,沿、将矩形折起成为一个直三棱柱,使与、与重合后分别记为,在直三棱柱中,点分别为和的中点.(I)证明:∥平面;(Ⅱ)若二面角为直二面角,求的值.
数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n·bn+1(为常数,且≠1).(I)求数列{an}的通项公式及的值;(Ⅱ)比较+++ +与Sn的大小.
已知向量,设函数.求的最小正周期与单调递增区间;在中,分别是角的对边,若,,求的最大值.