S n 为等差数列 { a n } 的前n项和,且 a n = 1 , S 7 = 28 . 记 b n = [ lg a n ] ,其中 [ x ] 表示不超过x的最大整数,如 [ 0 . 9 ] =0 , [ lg 99 ] =1 .
(1)求 b 1 , b 11 , b 101 ;
(2)求数列 { b n } 的前1 000项和.
如图,在四棱锥中,四边形是菱形,,为的中点. (1)求证:面; (2)求证:平面平面.
已知展开式的各项依次记为. 设. (1)若的系数依次成等差数列,求的值; (2)求证:对任意,恒有.
在极坐标系中,求曲线与的交点的极坐标.
已知矩阵,向量.求向量,使得.
已知函数. (1)若函数在区间上有极值,求实数的取值范围; (2)若关于的方程有实数解,求实数的取值范围; (3)当,时,求证:.