(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)我们把一系列向量按次序排成一列,称之为向量列,记作,已知向量列满足:, .(1)证明:数列是等比数列;(2)设表示向量与间的夹角,若,,求;(3)设,问数列中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.
若满足,则称为的不动点. (1)若函数没有不动点,求实数的取值范围; (2)若函数的不动点,求的值; (3)若函数有不动点,求实数的取值范围.
在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点. (1)求证:面; (2)求二面角的大小的正弦值; (3)求点到面的距离.
在中,角所对的边为.已知,且. (1)求的值; (2)当时,求的面积.
设为等差数列的前项和,已知. (1)求数列的通项公式; (2)求证: .
二次函数的图象过原点,且对,恒有.设数列满足. (1)求函数的表达式; (2)证明: ; (3)证明:.