(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)我们把一系列向量按次序排成一列,称之为向量列,记作,已知向量列满足:, .(1)证明:数列是等比数列;(2)设表示向量与间的夹角,若,,求;(3)设,问数列中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.
甲、乙两名运动员参加“选拔测试赛”,在相同条件下,两人5次测试的成绩(单位:分)记录如下: 甲 86 77 92 72 78 乙 78 82 88 82 95 (1)用茎叶图表示这两组数据;. (2)现要从中选派一名运动员参加比赛,你认为选派谁参赛更好?说明理由(不用计算); (3)若从甲、乙两人的5次成绩中各随机抽取一个,求甲的成绩比乙高的概率.
已知函数的图象过点. (1)求实数的值; (2)求函数的最小正周期及最大值.
已知集合, 具有性质:对任意的,至少有一个属于. (1)分别判断集合与是否具有性质; (2)求证:①; ②; (3)当或时集合中的数列是否一定成等差数列?说明理由.
已知椭圆的两个焦点分别为和,离心率. (1)求椭圆的方程; (2)设直线()与椭圆交于、两点,线段的垂直平分线交轴于点,当变化时,求面积的最大值.
已知函数,其中为常数,. (1)当时,求曲线在点处的切线方程; (2)是否存在实数,使的极大值为?若存在,求出的值;若不存在,说明理由.