设函数 f ( x ) = ( x - 1 ) 3 - ax - b , x ∈ R ,其中 a , b ∈ R 。
(1)求 f ( x ) 的单调区间;
(2)若 f ( x ) 存在极点 x 0 , 且 f ( x 1 ) = f ( x 0 ) ,其中 x 1 ≠ x 0 , 求证: x 1 + 2 x 0 = 3 ;
(3)设 a > 0 ,函数 g ( x ) = ∣ f ( x ) ∣ ,求证: g ( x ) 在区间 [ 0 , 2 ] 上的最大值不小于 1 4 .
(本小题满分16分)如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过C点。已知AB=3米,AD=2米。(Ⅰ)设(单位:米),要使花坛AMPN的面积大小32平方米,求的取值范围;(Ⅱ)若(单位:米),则当AM,AN的长度分别是多少时,花坛AMPN的面积最大?并求出最大面积。
(本小题满分16分)如图,已知矩形ABCD中,AB=10,BC=6,沿矩形的对角线BD把折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上。(Ⅰ)求证:(Ⅱ)求证:平面平面
(本小题满分14分)已知:在函数的图象上,以为切点的切线的倾斜角为(Ⅰ)求的值;(Ⅱ)是否存在最小的正整数,使得不等式恒成立?如果存在,请求出最小的正整数,如果不存在,请说明理由。
(本小题满分14分)在直角坐标系中,O为坐标原点,设直线经过点,且与轴交于点F(2,0)。(Ⅰ)求直线的方程;(Ⅱ)如果一个椭圆经过点P,且以点F为它的一个焦点,求椭圆的标准方程。
(本小题满发14分)已知(Ⅰ)求的值;(Ⅱ)求的值