设函数 f ( x ) = ( x - 1 ) 3 - ax - b , x ∈ R ,其中 a , b ∈ R 。
(1)求 f ( x ) 的单调区间;
(2)若 f ( x ) 存在极点 x 0 , 且 f ( x 1 ) = f ( x 0 ) ,其中 x 1 ≠ x 0 , 求证: x 1 + 2 x 0 = 3 ;
(3)设 a > 0 ,函数 g ( x ) = ∣ f ( x ) ∣ ,求证: g ( x ) 在区间 [ 0 , 2 ] 上的最大值不小于 1 4 .
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式其中为常数.己知销售价格为5元/千克时,每日可售出该商品11千克. (1)求的值; (2)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得利润最大.
已知函数. (1)求的值; (2)若,求.
已知函数. (1)求的最小正周期及单调递减区间; (2)若在区间上的最大值与最小值的和为,求的值.
在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,曲线的参数方程为(为参数). (1)求直线的直角坐标方程; (2)求点到曲线上的点的距离的最小值.
记函数的定义域为集合,函数的定义域为集合. (1)求; (2)若,且,求实数的取值范围.