设函数 f ( x ) = ( x - 1 ) 3 - ax - b , x ∈ R ,其中 a , b ∈ R 。
(1)求 f ( x ) 的单调区间;
(2)若 f ( x ) 存在极点 x 0 , 且 f ( x 1 ) = f ( x 0 ) ,其中 x 1 ≠ x 0 , 求证: x 1 + 2 x 0 = 3 ;
(3)设 a > 0 ,函数 g ( x ) = ∣ f ( x ) ∣ ,求证: g ( x ) 在区间 [ 0 , 2 ] 上的最大值不小于 1 4 .
的半径为的定圆的两互相垂直的直径,作动弦交于,引,且交于,求点的轨迹方程.
如图,某客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用(元)与行李重量的关系用直线的方程表示,试求:(1)直线的方程.(2)旅客最多可免费携带多少行李?
已知矩形中,,,中心在第一象限内,且与轴的距离为一个单位,动点沿矩形一边运动,求的取值范围.
已知正三角形的顶点,求的外接圆方程.
直线与圆相交于两个不同点,当取不同实数值时,求中点的轨迹方程.