:如图,两个工厂相距,点为的中点,现要在以为圆心,为半径的圆弧上的某一点处建一幢办公楼,其中.据测算此办公楼受工厂的“噪音影响度”与距离的平方成反比,比例系数是1,办公楼受工厂的“噪音影响度” 与距离的平方也成反比,比例系数是4,办公楼受两厂的“总噪音影响度”是受两厂“噪音影响度”的和,设为.(Ⅰ)求“总噪音影响度” 关于的函数关系,并求出该函数的定义域;(Ⅱ)当为多少时,“总噪音影响度”最小?
已知函数,其导函数为. (1)若函数在其定义域内为单调函数,求的取值范围; (2)若且,已知,求证:; (3)在(2)的条件下,试比较与的大小,并说明你的理由.
已知是椭圆的两个焦点,为坐标原点,点在椭圆上,且,⊙是以为直径的圆,直线:与⊙相切,并且与椭圆交于不同的两点 (1)求椭圆的标准方程; (2)当,且满足时,求弦长的取值范围.
已知函数,. (1)求函数的最小值; (2)若存在(是自然对数的底数)使不等式成立,求实数的取值范围.
如图所示,已知点是抛物线上一定点,直线AM、BM的斜率互为相反数,且与抛物线另交于A、B两个不同的点. (1)求点M到其准线的距离; (2)求证:直线AB的斜率为定值.
已知等差数列的公差,,且成等比数列. (1)求通项公式; (2)令,,求数列的前项的和.