(本题10分)已知函数f(x)=x3+ax2+bx+c(x)在x=1和x=-处都取得极值。(1) 求a、b的值;(2) 求函数f(x)的单调递增区间;(3) 若对任意x,f(x)<c2恒成立,求实数c的取值范围。
已知抛物线的顶点在坐标原点,对称轴为轴,焦点为,抛物线上一点的横坐标为2,且.(1)求抛物线的方程;(2)过点作直线交抛物线于,两点,求证: .
已知离心率的椭圆一个焦点为.(1)求椭圆的方程;(2) 若斜率为1的直线交椭圆于两点,且,求直线方程.
已知函数.(1)求函数的单调区间;(2)若,求函数的值域.
不等式解集为,不等式解集为,不等式解集为.(1)求;(2)若“”是“”的充分条件,求实数的取值范围.
已知a,b,c分别为△ABC三个内角A,B,C的对边,为,的等差中项.(1)求A;(2)若a=2,△ABC的面积为,求b,c的值.