(本小题满分12分) 已知定直线l:x=1和定点M(t,0)(t∈R),动点P到M的距离等于点P到直线l距离的2倍。(1)求动点P的轨迹方程,并讨论它表示什么曲线;(2)当t=4时,设点P的轨迹为曲线C,过点M作倾斜角为θ(θ>0)的直线交曲线C于A、B两点,直线l与x轴交于点N。若点N恰好落在以线段AB为直径的圆上,求θ的值。
如图,过圆O外一点M作它的一条切线,切点为A,过A点作直线AP垂直直线OM,垂足为P. (1)证明:OM·OP=OA2; (2)N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点.过B点的切线交直线ON于K.证明:∠OKM=90°.
AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC.
如图,∠PAQ是直角,圆O与AP相切于点T,与AQ相交于两点B,C.求证:BT平分∠OBA.
如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2),圆O1的弦AB交圆O2于点C(O1不在AB上). 求证:AB∶AC为定值.
如图,在直三棱柱ABC A1B1C1中,AC=4,CB=2,AA1=2,∠ACB=60°,E、F分别是A1C1,BC的中点. (1)证明:平面AEB⊥平面BB1C1C; (2)证明:C1F∥平面ABE; (3)设P是BE的中点,求三棱锥P B1C1F的体积.