如图,直角△BCD所在的平面垂直于正△ABC所在的平面,PA⊥平面ABC,,、F分别为DB、CB的中点,(1)证明:AE⊥BC; (2)求直线PF与平面BCD所成的角.
对于给定的正整数k,若数列 { a n } 满足: a n - k + a n - k + 1 + … + a n - 1 + a n + 1 + … a n + k - 1 + a n + k = 2 k a n 对任意正整数 n ( n > k ) 总成立,则称数列{a n}是" P ( k ) 数列".
(Ⅰ)证明:等差数列 { a n } 是" P ( 3 ) 数列";
(Ⅱ)若数列 { a n } 既是"P(2)数列",又是" P ( 3 ) 数列",证明: { a n } 是等差数列.
如图,水平放置的正四棱柱形玻璃容器 Ⅰ 和正四棱台形玻璃容器 Ⅱ 的高均为 32 c m ,容器 Ⅰ 的底面对角线 A C 的长为 10 7 cm,容器 Ⅱ 的两底面对角线 E G , E 1 G 1 的长分别为 14 c m 和 62 c m .分别在容器 Ⅰ 和容器 Ⅱ 中注入水,水深均为 12 c m .现有一根玻璃棒 l ,其长度为 40 c m .(容器厚度、玻璃棒粗细均忽略不计)
(Ⅰ)将l放在容器 Ⅰ 中, l 的一端置于点 A 处,另一端置于侧棱 C C 1 上,求 l 没入水中部分的长度;
(Ⅱ)将l放在容器 Ⅱ 中, l 的一端置于点 E 处,另一端置于侧棱 G G 1 上,求 l 没入水中部分的长度.
如图,在平面直角坐标系 x O y 中,椭圆 E : x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) 的左、右焦点分别为 F 1 , F 2 , 离心率为 1 2 ,两准线之间的距离为 8 .点P在椭圆E上,且位于第一象限,过点 F 1 作直线 P F 1 的垂线 l 1 , 过点 F 2 作直线 P F 2 的垂线 l 2 .
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线 l 1 , l 2 的交点Q在椭圆E上,求点P的坐标.
已知向量 a ⃗ = ( cosx , sinx ) , b ⃗ = ( 3 ,﹣ 3 ), x ∈ [ 0 , π ] .
(Ⅰ)若 a ⃗ ∥ b ⃗ ,求x的值;
(Ⅱ)记 f ( x ) = a ⃗ ⋅ b ⃗ ,求 f ( x ) 的最大值和最小值以及对应的x的值.
如图,在三棱锥 A ﹣ BCD 中, AB ⊥ AD , BC ⊥ BD ,平面 ABD ⊥ 平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且 EF ⊥ AD .
求证:(Ⅰ)EF∥平面ABC;
(Ⅱ) AD ⊥ AC .