本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆()的焦距为,且椭圆的短轴的一个端点与左、右焦点、构成等边三角形.(1)求椭圆的标准方程;(2)设为椭圆上上任意一点,求的最大值与最小值;(3)试问在轴上是否存在一点,使得对于椭圆上任意一点,到的距离与到直线的距离之比为定值.若存在,求出点的坐标,若不存在,请说明理由.
若实数满足. 试确定的大小关系.
从椭圆 上一点P向x轴作垂线,垂足恰为左焦点F1,又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB//OP,,求椭圆的方程
设函数=x+ax2+blnx,曲线y=过P(1,0),且在P点处的切斜线率为2. (I)求a,b的值;(II)证明:≤2x-2.
(12)已知点是圆上的动点, (1)求的取值范围; (2)若恒成立,求实数的取值范围。
解不等式