本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆()的焦距为,且椭圆的短轴的一个端点与左、右焦点、构成等边三角形.(1)求椭圆的标准方程;(2)设为椭圆上上任意一点,求的最大值与最小值;(3)试问在轴上是否存在一点,使得对于椭圆上任意一点,到的距离与到直线的距离之比为定值.若存在,求出点的坐标,若不存在,请说明理由.
(本小题满分12分) 已知f(x)=,求f[f(0)]的值
(本小题满分12分) 集合A={(x,y)},集合B={(x,y),且0},又A,求实数m的取值范围
(本小题满分12分) 已知,全集U={x|-5≤x≤3},A={x|-5≤x<-1},B={x|-1≤x<1},求CUA,CUB,(CUA)∩(CUB),(CUA)∪(CUB),CU(A∩B),CU(A∪B),并指出其中相关的集合
(本小题满分14分)已知是定义在上的函数, 其三点, 若点的坐标为,且 在和上有相同的单调性, 在和上有相反的单调性. (1)求 的取值范围; (2)在函数的图象上是否存在一点, 使得 在点的切线斜率为?求出点的坐标;若不存在,说明理由; (3)求的取值范围。
.本小题满分15分) 如图,已知椭圆E:,焦点为、,双曲线G:的顶点是该椭圆的焦点,设是双曲线G上异于顶点的任一点,直线、与椭圆的交点分别为A、B和C、D,已知三角形的周长等于,椭圆四个顶点组成的菱形的面积为. (1)求椭圆E与双曲线G的方程; (2)设直线、的斜率分别为和,探求和的关系; (3)是否存在常数,使得恒成立? 若存在,试求出的值;若不存在, 请说明理由.