(本小题满分12分)青海玉树发生地震后,为重建,对某项工程进行竞标,现共有6家企业参与竞标,其中A企业来自辽宁省,B、C两家企业来自山东省,D、E、F三家企业来自河南省,此项工程需要两家企业联合施工,假设每家企业中标的概率相同.(Ⅰ)列举所有企业的中标情况;(Ⅱ)在中标的企业中,至少有一家来自山东省的概率是多少?
已知直线l的参数方程为,曲线C的参数方程为.(Ⅰ)将曲线C的参数方程转化为普通方程;(Ⅱ)若直线l与曲线C相交于A、B两点,试求线段AB的长
有红蓝两粒质地均匀的正方体骰子,红色骰子有两个面是8,四个面是2,蓝色骰子有三个面是7,三个面是1,两人各取一只骰子分别随机掷一次,所得点数较大者获胜。(Ⅰ)分别求出两只骰子投掷所得点数的分布列及期望;(Ⅱ)求投掷蓝色骰子者获胜的概率是多少?
根据如图所示的流程图,将输出的的值依次分别记为,将输出的的值依次分别记为.(Ⅰ)求数列,通项公式;(Ⅱ)依次在与中插入个3,就能得到一个新数列,则是数列中的第几项?(Ⅲ)设数列的前项和为,问是否存在这样的正整数,使数列的前项的和,如果存在,求出的值,如果不存在,请说明理由.
设不等式组表示的区域为A,不等式组表示的区域为B,在区域A中任意取一点P.(Ⅰ)求点P落在区域B中的概率;(Ⅱ)若分别表示甲、乙两人各掷一次正方体骰子所得的点数,求点P落在区域B中的概率.
已知圆经过和直线相切,且圆心在直线上.(Ⅰ)求圆的方程;(Ⅱ)若直线经过圆内一点与圆相交于两点,当弦被点平分时,求直线的方程