如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F。(1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形。由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”。你同意他的看法吗?请充分说明理由。
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:. (1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月可获得最大利润?(不需求出利润的最大值) (2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元? (3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)
已知是⊙的直径,是⊙的切线,是切点,与⊙交于点. (1)如图①,若,,求的长(结果保留根号); (2)如图②,若为的中点,求证:直线是⊙的切线.
(1)用配方法把二次函数化为顶点式,并在直角坐标系中画出它的大致图象(). (2)若是函数图象上的两点,且,请比较的大小关系.(直接写结果) (3)把方程的根在函数的图象上表示出来.
在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点). (1)如果建立直角坐标系,使点B的坐标为(-5,2),点C的坐标为(-2,2),则点A的坐标为; (2)画出△ABC绕点O顺时针旋转90°后的△A1B1C1,并求线段BC扫过的面积.
在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.(1)求证:△BEC≌△DEC;(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.