(本小题满分12分)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,为此市政府首先采用抽样调查的方法获得了位居民某年的月均用水量(单位:吨).根据所得的个数据按照区间进行分组,得到频率分布直方图如图(1)若已知位居民中月均用水量小于1吨的人数是12,求位居民中月均用水量分别在区间和内的人数;(2)在该市居民中随意抽取10位,求至少有2位居民月均用水量在区间或内的概率.(精确到0.01.参考数据:)
(本小题满分12分)甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(Ⅰ)若左右手各取一球,求两只手中所取的球颜色不同的概率;(Ⅱ)若左右手依次各取两球,称同一手中 两球颜色相同的取法为成功取法,记两次取球(左右手依次各取两球为两次取球)的成功取法次数为随机变量X,求X的分布列和数学期望.
(本小题满分10分)已知集合.(Ⅰ)若的充分条件,求的取值范围;(Ⅱ)若,求的取值范围.
已知函数⑴解不等式;⑵设函数,若不等式恒成立,求实数的取值范围.
已知曲线,直线(t为参数).(1)写出曲线C的参数方程,直线的普通方程;(2)过曲线C上任意一点P作与夹角为30°的直线,交于点A,求|PA|的最大值与最小值.
如图,圆周角的平分线与圆交于点,过点的切线与弦的延长线交于点,交于点.(1)求证:;(2)若四点共圆,且弧与弧相等,求.