(本小题满分12分)甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(Ⅰ)若左右手各取一球,求两只手中所取的球颜色不同的概率;(Ⅱ)若左右手依次各取两球,称同一手中 两球颜色相同的取法为成功取法,记两次取球(左右手依次各取两球为两次取球)的成功取法次数为随机变量X,求X的分布列和数学期望.
在某校对30名女生与80名男生进行是否有懒惰习惯进行调查,发现女生中有15人有懒惰习惯,男生中有50人有懒惰习惯。 (1)请根据上述数据填写2×2列联表;
(2)能否判断懒惰是否与性别有关。(参考公式:) 临界值表
在中,三个内角A、B、C的对边分别为a,b,c,且A、B、C成等差数列,a,b,c成等比数列,请用分析法证明:为等边三角形。
下表提供了某厂节油降耗技术发行后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据.
(1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)(参考公式:,)
用反证法证明:若三个互不相等的正数,成等差数列,求证:不可能成等比数列。
计算: (1)、(2)、 (3)、