(本小题满分12分)已知椭圆的离心率为,其中左焦点F(-2,0).(1) 求椭圆C的方程;(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
已知,且,的最小值为. (1)求的值; (2)解关于的不等式.
对于定义域为的函数,若同时满足: ①在内单调递增或单调递减; ②存在区间[],使在上的值域为; 那么把函数()叫做闭函数. (1)求闭函数符合条件②的区间; (2) 若是闭函数,求实数的取值范围.
设函数定义域为. (1)若,求实数的取值范围; (2)若在上恒成立,求实数的取值范围.
销售甲、乙两种商品所得利润分别为P(单位:万元)和Q(单位:万元),它们与投入资金(单位:万元)的关系有经验公式, .今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资(单位:万元) (1)试建立总利润(单位:万元)关于的函数关系式,并指明函数定义域; (2)如何投资经营甲、乙两种商品,才能使得总利润最大.
(本小题满分14分) 先解答(1),再通过结构类比解答(2): (1)请用tanx表示,并写出函数的最小正周期; (2)设为非零常数,且,试问是周期函数吗?证明你的结论.