(本小题共12分)已知椭圆E:的焦点坐标为(),点M(,)在椭圆E上.(Ⅰ)求椭圆E的方程;(Ⅱ)设Q(1,0),过Q点引直线与椭圆E交于两点,求线段中点的轨迹方程;(Ⅲ)O为坐标原点,⊙的任意一条切线与椭圆E有两个交点,且,求⊙的半径.
如图,几何体中,四边形为菱形,,,面∥面,、、都垂直于面,且,为的中点,为的中点.(1)求几何体的体积;(2)求证:为等腰直角三角形;(3)求二面角的大小.
小明参加完高考后,某日路过一家电子游戏室,注意到一台电子游戏机的规则是:你可在1,2,3,4,5,6点中选一个,押上赌注a元。掷3枚骰子,如果所押的点数出现1次、2次、3次,那么原来的赌注仍还给你,并且你还分别可以收到赌注的1倍、2倍、3倍的奖励。如果所押的点数不出现,那么赌注就被庄家没收。(1)求掷3枚骰子,至少出现1枚为1点的概率;(2)如果小明准备尝试一次,请你计算一下他获利的期望值,并给小明一个正确的建议。
凸四边形中,其中为定点,为动点,满足.(1)写出与的关系式;(2)设的面积分别为和,求的最大值,以及此时凸四边形的面积。
如图,长方体中,,点是的中点.(1)求三棱锥的体积;(2)证明:;(3)求二面角的正切值.
某高校在2011年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试.① 已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙同时进入第二轮面试的概率;② 学校决定在这6名学生中随机抽取2名学生接受考官的面试,设第4组中有X名学生被考官面试,求X的分布列和数学期望.