如图,圆柱内有一个三棱柱,三棱柱的 底面为圆柱底面的内接三角形,且是圆的直径。(I)证明:平面平面;(II)设,在圆柱内随机选取一点,记该点取自三棱柱内的概率为。(i)当点在圆周上运动时,求的最大值;(ii)如果平面与平面所成的角为。当取最大值时,求的值。
已知函数的定义域为,值域为.试求函数()的最小正周期和最值
在锐角三角形ABC中,已知内角A、B、C所对的边分别为a、b、c,且.(1)若,求A、B、C的大小;(2)已知向量的取值范围.
(本小题满分14分)某光学仪器厂有一条价值为万元的激光器生产线,计划通过技术改造来提高该生产线的生产能力,提高产品的增加值. 经过市场调查,产品的增加值万元与技术改造投入万元之间满足:①与成正比;②当时,,并且技术改造投入满足,其中为常数且.(I)求表达式及定义域;(II)求技术改造之后,产品增加值的最大值及相应的值.
(本小题满分12分)某玩具厂计划每天生产A、B、C三种玩具共100个. 已知生产一个玩具A需5分钟,生产一个玩具B需7分钟,生产一个玩具C需4分钟,而且总生产时间不超过10个小时. 若每生产一个玩具A、B、C可获得的利润分别为5元、6元、3元.(I)用每天生产的玩具A的个数与玩具B的个数表示每天的利润元;(II)请你为玩具厂制定合理的生产任务分配计划,使每天的利润最大,并求最大利润.
(本小题满分12分)已知,证明:.