选修4—4:坐标系与参数方程以直角坐标系的原点为极点,轴的正半轴为极轴,已知点的直角坐标为,点的极坐标为,若直线过点,且倾斜角为,圆以为圆心、为半径。(1)求直线的参数方程和圆的极坐标方程;(2)试判定直线和圆的位置关系。
已知函数. (1)若,作出函数的图象; (2)当,求函数的最小值; (3)若,求函数的最小值.
某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.若每辆车的月租金每增加50元,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元. (1)当每辆车的月租金定为3600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时, 租赁公司的月收益最大,最大月收益是多少?
已知函数 (1)当时,判断并证明函数的单调性并求的最小值; (2)若对任意,都成立,试求实数的取值范围.
已知函数= (1)判断函数的奇偶性,并说明理由; (2)利用函数单调性定义证明函数在区间上为增函数.
已知,集合,. (Ⅰ)若,求,; (Ⅱ)若,求的范围.