如图,在梯形ABCD中,AB‖CD,∠A=,AB=3,CD=6,BE⊥BC交直线AD于点E. (1)当点E与D恰好重合时,求AD的长;(2)当点E在边AD上时(E不与A、D重合),设AD=x,ED=y,试求y关于x的函数关系式,并写出定义域;(3)问:是否可能使△ABE、△CDE与△BCE都相似?若能,请求出此时AD的长;若不能,请说明理由.
(本小题满分10分) (1)计算; (2)化简.
如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8). (1)求抛物线C1关于原点对称的抛物线C2的解析式; (2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S.若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止.求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围; (3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由.
(1)知识再现 如图(1):若点A,B在直线l同侧,A,B到l的距离分别是3和2,AB="4,现在直线l上找一点P,使AP+BP的值最小,做法如下:" 作点A关于直线l的对称点A′,连接BA′,与直线l的交点就是所求的点P,线段BA′的长度即为AP+BP的最小值,请你求出这个最小值. (2)实践应用 ①如图(2),⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC="60°P是OB上一动点" ,则PA+PC的最小值是 ②如图(3),Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为 ③如图(4),菱形ABCD中AB="2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点" , 则PK+QK的最小值为 ④如图(5),在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=,将△ACD沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是 (3)拓展延伸 如图(6):在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD,保留作图痕迹,不必写出作法.
如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=a.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD. (1)求证:△COD是等边三角形; (2)当a="150°时,试判断△AOD的形状,并说明理由;" (3)探究:当a为多少度时,△AOD是等腰三角形?
如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=. (1)求边AB的长; (2)求反比例函数的解析式和n的值; (3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.