(本小题满分l2分) 设椭圆的焦点分别为,直线交轴于点,且. (Ⅰ)试求椭圆的方程; (Ⅱ)过分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形面积的最大值和最小值.
已知函数.(为常数)(1)当时,①求的单调增区间;②试比较与的大小;(2),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.
已知椭圆的右焦点为,离心率,是椭圆上的两动点,动点满足(其中实数为常数).(1)求椭圆标准方程;(2)当,且直线过点且垂直于轴时,求过三点的外接圆方程;(3)若直线与的斜率乘积,问是否存在常数,使得动点满足,其中,若存在求出的值,若不存在,请说明理由.
某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中, 为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.⑴求的值;⑵若该商品的成本为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大.
二次函数的最小值等于4,且.(1)求的解析式;(2)若函数的定义域为,求的值域;(3)若函数的定义域为,的值域为,求的值.
设:函数在内单调递减;:曲线与轴交于不同的两点.(1)若为真且为真,求的取值范围;(2)若与中一个为真一个为假,求的取值范围.