(满分12分)设数列的前项和为.已知,,。(Ⅰ)求数列的通项公式;(Ⅱ)记为数列的前项和,求;
已知圆. (1)若直线过点,且与圆相切,求直线的方程; (2)若圆的半径为4,圆心在直线:上,且与圆内切,求圆的方程.
如图,斜四棱柱的底面是矩形,平面⊥平面,分别为的中点. 求证:(1);(2)∥平面.
已知为实数,:点在圆的内部; :都有. (1)若为真命题,求的取值范围; (2)若为假命题,求的取值范围; (3)若“且”为假命题,且“或”为真命题,求的取值范围.
如图,设椭圆:的离心率,顶点的距离为,为坐标原点. (1)求椭圆的方程; (2)过点作两条互相垂直的射线,与椭圆分别交于两点. (ⅰ)试判断点到直线的距离是否为定值.若是请求出这个定值,若不是请说明理由; (ⅱ)求的最小值.
如图,在各棱长均为的三棱柱中,侧面底面,. (1)求侧棱与平面所成的角; (2)已知点满足,在直线上的点,满足,求二面角的余弦值.