设函数 (1)若b和c分别是先后抛掷一枚骰子得到的点数,求对任意x∈R,f(x)﹥0恒成立的概率。(2)若b是从区间任取得一个数,c是从任取的一个数,求函数f(x)的图像与x轴有交点的概率。
在如图所示的几何体中,四边形ABCD是直角梯形,AD∥BC,AB⊥BC,AD=2,AB=3,BC=BE=7,△DCE是边长为6的正三角形.(1)求证:平面DEC⊥平面BDE;(2)求二面角C—BE—D的余弦值.
已知向量。(1)求的最小正周期和单调减区间;(2)将函数的图象向右平移个单位,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,在△ABC中,角A、B、C的对边分别为,若,求的值.
已知数列是等差数列,是等比数列,。(1)求数列、的通项公式;(2)设数列中,,求数列的前n项和Sn.
设函数,其中.(1)若,求在[1,4]上的最值;(2)若在定义域内既有极大值又有极小值,求实数的取值范围;(3)求证:不等式恒成立.
已知数列满足,前n项和为Sn,Sn=.(1)求证:是等比数列;(2)记,当时是否存在正整数m,都有?如果存在,求出m的值;如果不存在,请说明理由.