本题共2个小题,第1小题6分,第2小题6分.已知是复数,为实数(为虚数单位),且.(1)求复数;(2)若,求实数的取值范围.
已知函数 (1)在给定的直角坐标系内画出的图象; (2)写出的单调递增区间(不需要证明); (3)写出的最大值和最小值(不需要证明).
已知全集,集合,, (1)求、; (2)若集合是集合A的子集,求实数k的取值范围.
(1)计算的值. (2)计算的值.
(本小题满分12分)如图,在三棱锥P- ABC中,PC⊥平面ABC,△ABC为正三角形,D,E,F分别是BC,PB,CA的中点. (1)证明平面PBF⊥平面PAC; (2)判断AE是否平行平面PFD?并说明理由; (3)若PC =" AB" = 2,求三棱锥P - DEF的体积.
(本小题10分)如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为正方形,PA=AB=2,M, N分别为PA, BC的中点. (Ⅰ)证明:MN∥平面PCD; (Ⅱ)求MN与平面PAC所成角的正切值.