(本题满分14分)已知点及圆:.(Ⅰ)若直线过点且与圆心的距离为1,求直线的方程;(Ⅱ)设过直线与圆交于、两点,当时,求以为直径的圆的方程;(Ⅲ)设直线与圆交于,两点,是否存在实数,使得过点的直线 垂直平分弦?若存在,求出实数的值;若不存在,请说明理由.
已知平面向量,(Ⅰ)若,求的值; (Ⅱ)若,求的值.
已知半径为的圆的圆心在轴上,且与直线相切.圆心的横坐标是整数。(1)求圆的方程;(2)设直线与圆相交于两点,求实数的取值范围;(3) 在(Ⅱ)的条件下,是否存在实数,使得弦的垂直平分线过点,若存在,求出实数的值;若不存在,请说明理由.
将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,将得到的点数分别记为.(1)求直线与圆相切的概率;(2)将的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
在某次测验中,有6位同学的平均成绩为75分.用表示编号为的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学的成绩,及这6位同学成绩的标准差;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
统计局就某地居民的月收入情况调查了10 000人,并根据所得数据画了样本频率分布直方图,每个分组包括左端点,不包含右端点,如第一组表示收入在(1)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在的应抽取多少人;(2)根据频率分布直方图估计样本数据的中位数.