在某次测验中,有6位同学的平均成绩为75分.用表示编号为的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学的成绩,及这6位同学成绩的标准差;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
设求证:
已知曲线 在点 处的切线 平行直线,且点在第三象限. (Ⅰ)求的坐标; (Ⅱ)若直线 , 且 也过切点,求直线的方程.
已知圆,直线过定点. (1)求圆心的坐标和圆的半径; (2)若与圆C相切,求的方程; (3)若与圆C相交于P,Q两点,求三角形面积的最大值,并求此时的直线方程.
已知圆,交于A、B两点; (1)求过A、B两点的直线方程; (2)求过A、B两点,且圆心在直线上的圆的方程.
如图,四边形是正方形,为对角线和的交点,,为的中点; (1)求证:; (2)求证:.