(本题满分12分)已知直线经过直线与直线的交点,且垂直于直线.(Ⅰ)求直线的方程;(Ⅱ)求直线与两坐标轴围成的三角形的面积.
叙述并证明余弦定理.
如图,设是圆上的动点,点是在轴上投影,为上一点,且. (1)当在圆上运动时,求点的轨迹的方程; (2)求过点且斜率为的直线被所截线段的长度.
如图,在中,,,是上的高,沿把折起,使. (1)证明:平面平面; (2)设为的中点,求与夹角的余弦值.
已知函数() =,g ()=+。 (1)求函数h ()=()-g ()的零点个数,并说明理由; (2)设数列满足,,证明:存在常数,使得对于任意的,都有≤ .
如图,椭圆的离心率为,轴被曲线截得的线段长等于的长半轴长。 (1)求,的方程; (2)设与轴的交点为,过坐标原点的直线与相交于点,直线分别与相交与. ①证明:; ②记的面积分别是.问:是否存在直线,使得=?请说明理由。