已知二次函数f(x)=ax2+bx+c(a,b,c均为实数),满足a-b+c=0,对于任意实数x都有f (x)-x≥0,并且当x∈(0,2)时,有f (x)≤.(1)求f (1)的值;(2)证明:ac≥;(3)当x∈[-2,2]且a+c取得最小值时,函数F(x)=f (x)-mx (m为实数)是单调的,求证:m≤或m≥.
设,(其中,且).(1)请你推测能否用来表示;(2)如果(1)中获得了一个结论,请你推测能否将其推广.
求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大.
如图(1),在三角形中,,若,则;若类比该命题,如图(2),三棱锥中,面,若点在三角形所在平面内的射影为,则有什么结论?命题是否是真命题.
已知,是否存在不小于2的正整数,使得对于任意的正整数都能被整除?如果存在,求出最大的值;如果不存在,请说明理由.
数列的前项和,先计算数列的前4项,后猜想并证明之.