已知椭圆的左、右焦点分别为F1、F2,短轴端点分别为A、B,且四边形F1AF2B是边长为2的正方形(I)求椭圆的方程;(II)若C、D分别是椭圆长轴的左、右端点,动点M满足,连结CM交椭圆于P,证明为定值(O为坐标原点);(III)在(II)的条件下,试问在x轴上是否存在异于点C的定点Q,使以线段MP为直径的圆恒过直线DP、MQ的交点,若存在,求出Q的坐标,若不存在,说明理由
(本小题满分12分) 如图,在平行六面体中,,,,,,是的中点,设. (1)用表示; (2)求的长.
(本小题满分12分) 给定两个命题,:对任意实数都有恒成立;:关于的方程有两个正根;如果或为真,且为假,求实数的取值范围.
(本小题满分12分)已知函数f(x)=ln(x+1)-x. ⑴求函数f(x)的单调递减区间; ⑵若,证明:.
(本小题满分12分) 已知a为实数,。 ⑴求导数; ⑵若,求在[-2,2] 上的最大值和最小值; ⑶若在(-∞,-2)和[2,+∞]上都是递增的,求a的取值范围。
(本小题满分10分)已知f(x)=x3+ax2+bx+c,在x=1与x=-2时,都取得极值。 ⑴求a,b的值; ⑵若x[-3,2]都有f(x)>恒成立,求c的取值范围。