(本小题满分14分)小张经营某一消费品专买店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.(1)把表示为的函数;(2)当销售价为每件50元时,该店正好收支平衡,求该店的职工人数;(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店月利润最大?(利润=收入—支出)
已知函数. (Ⅰ)讨论的单调性; (Ⅱ)设.当时,若对任意, 存在,使,求实数的最小值
已知椭圆()的两个焦点分别为,点P在椭圆上,且满足,,直线与圆相切,与椭圆相交于A,B两点. (Ⅰ)求椭圆的方程; (Ⅱ)证明为定值(O为坐标原点)
如图,在长方体中,,且. (Ⅰ)求证:对任意,总有; (Ⅱ)若,求二面角的余弦值; (Ⅲ)是否存在,使得在平面上的射影平分?若存在,求出的值,若不存在,说明理由.
已知,若能表示成一个奇函数和一个偶函数的和. (Ⅰ)求和的解析式; (Ⅱ)若和在区间上都是减函数,求的取值范围.
在△ABC中, a,b,c分别为角A,B,C的对边,已知,△ABC的面积为,又. (Ⅰ)求角C的大小; (Ⅱ)求a+b的值.