(本小题满分12分)如图所示,在正三棱柱中,底面边长为,侧棱长为,是棱的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的大小;(Ⅲ)求点到平面的距离.
已知椭圆:过点,上、下焦点分别为、, 向量.直线与椭圆交于两点,线段中点为. (1)求椭圆的方程; (2)求直线的方程; (3)记椭圆在直线下方的部分与线段所围成的平面区域(含边界)为,若曲线与区域有公共点,试求的最小值.
已知四棱锥的底面是直角梯形,,,侧面为正三角形,,.如图所示. (1) 证明:平面; (2) 求四棱锥的体积.
在直三棱柱中, (1)求异面直线与所成角的大小; (2)求多面体的体积。
在长方体中,,过、、三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为. (1)求棱的长; (2)若的中点为,求异面直线与所成角的大小(结果用反三角函数值表示).
在长方体中,,过、、三点的平面截去长方体的一个角后,得到如图所示的几何体,且这个几何体的体积为. (1)求棱的长; (2)求点到平面的距离.