本小题满分14分) 定义运算,记函数 (Ⅰ)已知,且,求的值; (Ⅱ)在给定的直角坐标系中,用“五点法”作出函数在 一个周期内的简图; (Ⅲ)求函数的对称中心、最大值及相应的值.
在中,角A,B,C所对边分别为a,b,c,且向量,,满足(1)求角C的大小;(2)若成等差数列,且,求边的长
已知函数,.(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围;(3)设,若对任意的两个实数满足,总存在,使得成立,证明:.
已知椭圆C:的离心率为,左、右焦点分别为,点G在椭圆C上,且,的面积为3.(1)求椭圆C的方程:(2)设椭圆的左、右顶点为A,B,过的直线与椭圆交于不同的两点M,N(不同于点A,B),探索直线AM,BN的交点能否在一条垂直于轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由.
已知数列满足:,且,.(1)求通项公式;(2)求数列的前n项的和
在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中点.(1)求证:B1C∥平面A1BD;(2)求平面A1DB与平面DBB1夹角的余弦值.