(本小题满分14分) 如图,设抛物线的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线在轴上方的交点为,延长交抛物线于点,是抛物线上一动点,且M在与之间运动.(1)当时,求椭圆的方程,(2)当的边长恰好是三个连续的自然数时,求面积的最大值.
(本小题满分12分)设,若方程有两个均小于2的不同的实数根,则此时关于的不等式是否对一切实数都成立?并说明理由。
(本小题满分12分)已知函数的最小正周期为,最小值为,图象过点,(1)求的解析式;(2)求满足且的的集合.
(本小题满分12分)已知函数,(1)当时,求的最大值和最小值(2)若在上是单调函数,且,求的取值范围
(本小题满分10分)如图:、是单位圆上的点,是圆与轴正半轴的交点,三角形为正三角形, 且AB∥轴.(1)求的三个三角函数值;(2)求及.
设数列满足:是整数,且是关于x的方程的根.(1)若且n≥2时,求数列{an}的前100项和S100;(2)若且求数列的通项公式.