(本小题满分13分)某园林公司计划在一块为圆心,半径为5的半圆形(如图)地上种植花草树木,其中弓形区域用于观赏样板地,区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元. (1) 设,,分别用,表示弓形的面积;
观赏样板地
(2) 园林公司应该怎样规划这块土地,才能使总利润最大?(参考公式:扇形面积公式)
某示范性高中的校长推荐甲、乙、丙三名学生参加某大学自主招生考核测试,在本次考核中只有合格和优秀两个等级.若考核为合格,授予10分降分资格;考核为优秀, 授予20分降分资格.假设甲、乙、丙考核为优秀的概率分别为、、,他们考核所得的等级相互独立. (1)求在这次考核中,甲、乙、丙三名学生至少有一名考核为优秀的概率; (2)记在这次考核中甲、乙、丙三名学生所得降分之和为随机变量ξ,求随机变量ξ的分布列和数学期望.
某工厂生产A,B两种元件,其质量按测试指标划分,指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100个进行检测,检测结果统计如下:
(1)试分别估计元件A,元件B为正品的概率; (2)生产1个元件A,若是正品则盈利40元,若是次品则亏损5元;生产1个元件B,若是正品则盈利50元,若是次品则亏损10元.在(1)的前提下, (ⅰ)X为生产1个元件A和1个元件B所得的总利润,求随机变量X的分布列和数学期望; (ⅱ)求生产5个元件B所得利润不少于140元的概率.
深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回. (1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望; (2)求第二次训练时恰好取到一个新球的概率.
小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为,,,且每个问题回答正确与否相互独立. (1)求小王过第一关但未过第二关的概率; (2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望.
乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同. (1)求甲以4比1获胜的概率; (2)求乙获胜且比赛局数多于5局的概率; (3)求比赛局数的分布列.