(本小题满分12分)已知直线过抛物线的焦点且与抛物线相交于两点,自向准线作垂线,垂足分别为 .(Ⅰ)求抛物线的方程;(Ⅱ)证明:无论取何实数时,,都是定值;(III)记的面积分别为,试判断是否成立,并证明你的结论.
选修4-1:几何证明选讲已知中,,D是外接圆劣弧上的点(不与点A,C重合),延长BD至E.(1)求证:AD的延长线平分CDE;(2)若,中BC边上的高为2+,求外接圆的面积.
设函数,其中.(1)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;(2)当时,设,讨论的单调性;(3)在(1)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.
在平面直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为.(1)写出C的方程;(2)设直线与C交于A,B两点.k为何值时?此时的值是多少?
已知过抛物线的焦点,斜率为的直线交抛物线于,两点,且(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值.
等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.(1)求an与bn;(2)求++…+.