已知椭圆C:+=1(a>b>0),直线y=x+与以原点为圆心,以椭圆C的短半轴长为半径的圆相切,F1,F2为其左、右焦点,P为椭圆C上任一点,△F1PF2的重心为G,内心为I,且IG∥F1F2。⑴求椭圆C的方程。⑵若直线L:y=kx+m(k≠0)与椭圆C交于不同两点A,B且线段AB的垂直平分线过定点C(,0)求实数k的取值范围。
如图,三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB. (1)求证:PC⊥平面BDE; (2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明结论; (3)若AB=2,求三棱锥B﹣CED的体积.
如图,正方形的边长为2. (1)在其四边或内部取点,且,求事件:“”的概率; (2)在其内部取点,且,求事件“的面积均大于”的概率.
已知A、B、C是三角形ABC的三内角,且,并且 (1)求角A的大小。 (2)的递增区间。
已知函数为奇函数,且在处取得极大值2. (Ⅰ)求的解析式; (Ⅱ)过点(可作函数图像的三条切线,求实数的取值范围; (Ⅲ)若对于任意的恒成立,求实数的取值范围.
已知直线过定点,动点满足,动点的轨迹为. (Ⅰ)求的方程; (Ⅱ)直线与交于两点,以为切点分别作的切线,两切线交于点. ①求证:;②若直线与交于两点,求四边形面积的最大值.