(本小题满分13分)已知椭圆过点,且点在轴上的射影恰为椭圆的一个焦点(Ⅰ)求椭圆的方程;(Ⅱ)过作两条倾斜角互补的直线与椭圆分别交于两点.试问:四边形能否为平行四边形?若能,求出直线的方程;否则说明理由.
已知数列,计算,猜想的表达式,并用数学归纳法证明猜想的正确性
设. (1)求函数的单调区间; (2)若当时恒成立,求的取值范围。
已知函数在轴上的截距为1,且曲线上一点处的切线斜率为.(1)曲线在P点处的切线方程;(2)求函数的极大值和极小值
(本题14分) 已知函数R). (1)若曲线在点处的切线与直线平行,求的值; (2)在(1)条件下,求函数的单调区间和极值; (3)当,且时,证明:
(本题13分) 已知数列和满足:,, 其中为实数,为正整数. (Ⅰ)对任意实数,证明数列不是等比数列; (Ⅱ)试判断数列是否为等比数列,并证明你的结论;