(本小题满分13分)已知椭圆过点,且点在轴上的射影恰为椭圆的一个焦点(Ⅰ)求椭圆的方程;(Ⅱ)过作两条倾斜角互补的直线与椭圆分别交于两点.试问:四边形能否为平行四边形?若能,求出直线的方程;否则说明理由.
设复数z=-3cosθ+2isinθ. (1)当θ=时,求|z|的值; (2)若复数z所对应的点在直线x+3y=0上,求的值.
【改编】(本小题满分10分)已知函数 (Ⅰ)当时,求函数的单调递增区间 (Ⅱ)当时,求函数的极大值 (Ⅲ)在(Ⅱ)条件下,利用(Ⅱ)的结论证明不等式:
(本小题满分10分)已知,. (1)若,命题“或”为真,求实数的取值范围; (2)若是的必要不充分条件,求实数的取值范围.
设函数. (1)若=1时,函数取最小值,求实数的值; (2)若函数在定义域上是单调函数,求实数的取值范围;
实数m分别取什么数值时,复数z=(m2+5m+6)+(m2-2m-15)i (1)与复数2-12i相等; (2)与复数12+16i互为共轭复数; (3)对应的点在x轴的上方.