已知函数,(Ⅰ)若在[-1,1]上存在零点,求实数的取值范围;(Ⅱ)当时,若对任意的∈[1,4],总存在∈[1,4],使成立,求实数的取值范围;(Ⅲ)若函数(其中)的值域为区间D,是否存在常数,使区间D的长度为?若存在,求出的值;若不存在,请说明理由。(规定:区间的长度为).
(本小题满分10分) 选修4—1:几何证明选讲. 已知中, ,以点为圆心,以为半径的圆分别交,于两,两点,且为该圆的直径. (1)求证: ; (2)若.求的长.
(本小题满分12分) 已知函数. (1)判断函数的单调性; (2)若,当时,不等式恒成立,求实数的取值范围.
(本小题满分12分) 设点,的坐标分别为,,直线,相交于点,且它们的斜率之积是. (1)求点的轨迹的方程; (2),,为曲线上的三个动点, 在第一象限, ,关于原点对称,且,问的面积是否存在最小值?若存在,求出此时点的坐标;若不存在,请说明理由.
(本小题满分12分) 如图,在三棱柱中,平面,,,. (1)过的截面交于点,若为等边三角形,求出点的位置; (2)在(1)条件下,求平面与平面所成二面角的大小.
(本小题满分12分) 为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下: 女生: 男生: (1)从这20名男生中随机选出3人,求恰有一人睡眠时间不足7小时的概率; (2)完成下面2×2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”? (,其中)