(本小题满分12分)已知,且(1)求的最小正周期及单调递增区间。(2)在△ABC中,a,b,c,分别是A,B,C的对边,若成立,求f(A)的取值范围。
圆的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P. (1)求点P坐标; (2)焦点在x轴上的椭圆过点P,且与直线交于A,B两点,若的面积为2,求椭圆的标准方程.
已知圆C:. (1)若直线过定点,且与圆C相切,求方程; (2)若圆D的半径为3,圆心在直线上,且与圆C外切,求圆D方程.
直线过定点,且与直线,分别交于A,B两点,若线段AB的中点为P,求直线的方程.
已知二次函数。 (1)若,求函数在区间上最大值; (2)关于的不等式在上恒成立,求实数的取值范围; (3)函数在上是增函数,求实数的取值范围。
在平面直角坐标系中,已知抛物线的准线方程为,过点作抛物线的切线,切点为(异于点),直线过点与抛物线交于两点,,与直线交于点. (1)求抛物线的方程; (2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.