如图,在等腰梯形ABCD中,AB∥DC,AD=BC=5cm,AB=12cm,CD=6cm,点Q从C开始沿CD边向D移动,速度是每秒1厘米,点P从A开始沿AB向B移动,速度是点Q速度的a倍,如果点P,Q分别从A,C同时出发,当其中一点到达终点时运动停止.设运动时间为t秒.已知当t=时,四边形APQD是平行四边形.(1)求a的值;(2)线段PQ是否可能平分对角线BD?若能,求t的值,若不能,请说明理由;(3)若在某一时刻点P恰好在DQ的垂直平分线上,求此时t的值.
已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点. (1)填空:试用含的代数式分别表示点与的坐标,则; (2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积; (3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.
将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90º,∠A=∠D=30º,点E落在AB上,DE所在直线交AC所在直线于点F. (1)求证:AF+EF=DE; (2)若将图①中的△DBE绕点B按顺时针方向旋转角,且0º<<60º,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立; (3)若将图①中的△DBE绕点B按顺时针方向旋转角,且60º<<180º,其他条件不变,如图③.你认为(1)中的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF、EF与DE之间的关系,并说明理由.
某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元? (2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案? (3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金元,要使(2)中所有方案获利相同,值应是多少?此时,哪种方案对公司更有利?
某校积极开展每天锻炼1小时活动,老师对本校八年级学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级一分钟跳绳次数的扇形统计图.已知在图1中,组中值为190次一组的频率为0.12.(说明: 组中值为190次的组别为 180≤次数<200) 请结合统计图完成下列问题: (1)八(1)班的人数是,组中值为110次一组的频率为; (2)请把频数分布直方图补充完整; (3)如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学一分钟跳绳的达标率不低于90%,那么八年级同学至少有多少人?
如图,在△ABC中,∠C=90°,AC=3,BC=4.0为BC边上一点,以0为圆心,OB为半径作半圆与BC边和AB边分别交于点D、点E,连结DE。 (1)当BD=3时,求线段DE的长; (2)过点E作半圆O的切线,当切线与AC边相交时,设交点为F. 求证:△FAE是等腰三角形.