(12分)(Ⅰ)已知圆C:,求圆C关于原点对称的圆的方程;(Ⅱ)一个圆经过点,圆心在直线上,且与直线相切,求该圆的方程.
如图,直角三角形ABC的顶点A的坐标为(-2,0),直角顶点B的坐标为(0,-2),顶点C在x轴上. (1)求BC边所在直线的方程. (2)圆M是△ABC的外接圆,求圆M的方程.
△ABC的两条高所在直线的方程为2x-3y+1=0和x+y=0,顶点A的坐标为(1,2),求BC边所在直线的方程.
如图,M、N、P分别是正方体ABCD-A1B1C1D1的棱AB、BC、DD1上的点. (1)若=,求证:无论点P在D1D上如何移动,总有BP⊥MN; (2)若D1P:PD=1∶2,且PB⊥平面B1MN,求二面角M-B1N-B的余弦值; (3)棱DD1上是否总存在这样的点P,使得平面APC1⊥平面ACC1?证明你的结论.
已知四棱锥S-ABCD的底面ABCD是正方形,SA⊥底面ABCD,E是SC上的任意一点. (1)求证:平面EBD⊥平面SAC; (2)设SA=4,AB=2,求点A到平面SBD的距离;
如图所示,四棱锥P-ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60°,在四边形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2. (1)建立适当的坐标系,并写出点B,P的坐标; (2)求异面直线PA与BC所成角的余弦值; (3)若PB的中点为M,求证:平面AMC⊥平面PBC.