已知函数(1)当取何值时,函数的图象与轴有两个零点;(2)如果函数至少有一个零点在原点的右侧,求的值。
已知函数f(x)=+aln(x-1)(a∈R). (Ⅰ)若f(x)在[2,+∞)上是增函数,求实数a的取值范围; (Ⅱ)当a=2时,求证:1-<2ln(x-1)<2x-4(x>2); (Ⅲ)求证:++…+<lnn<1++ +(n∈N*,且n≥2).
已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为. (Ⅰ)求a,b的值; (Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有=+成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
现有A,B两球队进行友谊比赛,设A队在每局比赛中获胜的概率都是. (Ⅰ)若比赛6局,求A队至多获胜4局的概率; (Ⅱ)若采用“五局三胜”制,求比赛局数ξ的分布列和数学期望.
设公差不为0的等差数列{an}的首项为1,且a2,a5,a14构成等比数列. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若数列{bn}满足++…+=1-,n∈N*,求{bn}的前n项和Tn.
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB. (Ⅰ)证明:BC1∥平面A1CD; (Ⅱ)求二面角D-A1C-E的正弦值.