(本题满分12分)已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离为5,求抛物线的方程和m的值.
(本小题满分12分) 设甲、乙两套试验方案在一次试验中成功的概率均为,且这两套试验方案中至少有一套试验成功的概率为0.51,假设这两套试验方案在试验过程中,相互之间没有影响.设试验成功的方案的个数. (Ⅰ)求的值; (Ⅱ)求的数学期望与方差.
(本小题满分10分)已知A,B,C是的内角,分别是其对边长,向量. (Ⅰ)求角A的大小; (Ⅱ)若,求的长.
(本小题满分12分)已知椭圆C的中心在原点、焦点在轴上,椭圆C上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线:与椭圆交于不同的两点M,N(M,N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线过定点,并求出定点的坐标.
(本小题满分12分) 已知数列中,,且点在直线上. (Ⅰ)求数列的通项公式;(Ⅱ)若函数,求函数的最小值; (Ⅲ)设表示数列的前项和.试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由.
(本小题满分12分)为应对国际金融危机对企业带来的不良影响,2009年某企业实行裁员增效,已知现有员工人,每人每年可创纯利润1万元.据评估,在生产条件不变的条件下,每裁员一人,则留岗员工每人每年可多创收0.01万元,但每年需付给下岗工人0.4万元生活费,并且企业正常运行所需人数不得少于现有员工的,设该企业裁员人后纯收益为万元. (Ⅰ)写出关于的函数关系式,并指出的取值范围; (Ⅱ)当140<≤280时,问企业裁员多少人,才能获得最大的经济效益?(注:在保证能获得最大经济效益的情况下,能少裁员,应尽量少裁)