数,,在数轴上的位置如图所示且;(1)若,求的值;(2)用“>”从大到小把a,b,-b,c连接起来;
为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.
(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;
(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人.如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长 a % ,求 a 的值至少是多少?
为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“ A :自行车, B :电动车, C :公交车, D :家庭汽车, E :其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:
(1)在这次调查中,一共调查了 名市民,扇形统计图中, C 组对应的扇形圆心角是 ° ;
(2)请补全条形统计图;
(3)若甲、乙两人上班时从 A 、 B 、 C 、 D 四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.
如图,矩形 ABCD 的对角线 AC , BD 相交于点 O ,点 E , F 在 BD 上, BE = DF .
(1)求证: AE = CF ;
(2)若 AB = 6 , ∠ COD = 60 ° ,求矩形 ABCD 的面积.
如图,在平面直角坐标系中, ΔABC 的三个顶点分别为 A ( − 1 , − 2 ) , B ( − 2 , − 4 ) , C ( − 4 , − 1 ) .
(1)把 ΔABC 向上平移3个单位后得到△ A 1 B 1 C 1 ,请画出△ A 1 B 1 C 1 并写出点 B 1 的坐标;
(2)已知点 A 与点 A 2 ( 2 , 1 ) 关于直线 l 成轴对称,请画出直线 l 及 ΔABC 关于直线 l 对称的△ A 2 B 2 C 2 ,并直接写出直线 l 的函数解析式.
以菱形 ABCD 的对角线交点 O 为坐标原点, AC 所在的直线为 x 轴,已知 A ( − 4 , 0 ) , B ( 0 , − 2 ) , M ( 0 , 4 ) , P 为折线 BCD 上一动点,作 PE ⊥ y 轴于点 E ,设点 P 的纵坐标为 a .
(1)求 BC 边所在直线的解析式;
(2)设 y = M P 2 + O P 2 ,求 y 关于 a 的函数关系式;
(3)当 ΔOPM 为直角三角形时,求点 P 的坐标.