如图,以 A B 为直径的 ⊙ O 与 A H 相切于点 A ,点 C 在 A B 左侧圆弧上,弦 C D ⊥ A B 交 ⊙ O 于点 D ,连结 A C , A D .点 A 关于 C D 的对称点为 E ,直线 C E 交 ⊙ O 于点 F ,交 A H 于点 G .
(1)求证: ∠ C A G = ∠ A G C ;
(2)当点 E 在 A B 上,连结 A F 交 C D 于点 P ,若 EF CE = 2 5 ,求 DP CP 的值;
(3)当点 E 在射线 A B 上, A B = 2 ,以点 A , C , O , F 为顶点的四边形中有一组对边平行时,求 A E 的长.
因式分解: (1)x2﹣64; (2)3m2﹣30m+75.
甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场每次购物累计超过100元后,超出100的部分按折收费;在乙商场每次购物累计超过50元后,超过50元的部分按95%收费,若王老师有次到甲商场购物150元,实际支付145元. (1)求的值; (2)请你分析顾客到哪家商场购物更合算?
(1)请在横线上填写合适的内容,完成下面的证明:如图1,AB∥CD,求证:∠B+∠D=∠BED.证明:过点E引一条直线EF∥AB, ∴∠B=∠BEF,(___________________). ∵AB∥CD,EF∥AB ∴EF∥CD,(_______________________________). ∴∠D=________,(_____________________). ∴∠B+∠D=∠BEF+∠FED 即:∠B+∠D=∠BED. (2)如图2,AB∥CD,请写出∠B+∠BED+∠D=360°的推理过程. (3)如图3,AB∥CD,请直接写出结果:∠B+∠BEF+∠EFD+∠D=____________.
在一次知识竞赛中,甲、乙两人进入到“必答题”环节.规则是:两人轮流答题,每人都要回答20道题,每道题回答正确得分,回答错误或放弃回答扣分.当甲、乙两人恰好都答完12道题时,甲答对了9道题,得分为39分;乙答对了10道题,得分为46分. (1)求和的值; (2)规定此环节得分不低于60分能晋级,甲在剩下的比赛中至少还要答对多少道题才能顺利晋级?
某中学组织中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题: (1)在这次抽样调查中,一共调查了多少名学生? (2)请把折线统计图(图1)补充完整; (3)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.