(本小题满分14分)如图(1)已知矩形中,,、分别是、的中点,点在上,且,把沿着翻折,使点在平面上的射影恰为点(如图(2))。(1)求证:平面平面;(2)求二面角的大小.图(1) 图(2)
(本小题满分10分)已知直线l经过点P(1,1),倾斜角.(Ⅰ)写出直线l的参数方程(Ⅱ)设l与圆x2+y2=4相交与两点A、B,求点P到A、B两点的距离之积.
(本小题满分10分)已知函数.(Ⅰ)解不等式≤4;(Ⅱ)若存在x使得≤0成立,求实数a的取值范围.
(本小题满分10分)如图,△ABC内接于⊙O,AB=AC,直线MN切⊙O于点C,弦BD∥MN,AC与BD相交于点E.(Ⅰ)求证:△ABE≌△ACD;(Ⅱ)若AB=6,BC=4,求AE.
(本小题满分12分) 已知函数(为常数),直线l与函数的图象都相切,且l与函数的图象的切点的横坐标为l. (Ⅰ)求直线l的方程及a的值; (Ⅱ)当k>0时,试讨论方程的解的个数.
(本小题满分12分)设椭圆的离心率,右焦点到直线的距离为坐标原点.(Ⅰ)求椭圆的方程;(II)过点作两条互相垂直的射线,与椭圆分别交于两点,证明:点到直线的距离为定值,并求弦长度的最小值.