有6名同学站成一排,求:(1)甲不站排头也不站排尾有多少种不同的排法:(2)甲、乙、丙不相邻有多少种不同的排法.
定义在上的函数满足:①,②对任意实数b, . (1)求,,及满足的k值; (2)证明对任意,. (3)证明是上的增函数.
已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x). (Ⅰ) 求函数f(x)的表达式; (Ⅱ) 证明:当a>3时,关于x的方程f(x)= f(a)有三个实数解.
设是奇函数,是偶函数,并且,求和表达式。
求函数的定义域.
设 (1)求的表达式,并判断的奇偶性; (2)试证明:函数的图象上任意两点的连线的斜率大于0; (3)对于,当时,恒有求m的取值范围。