(本小题满分14分) 已知函数,;(Ⅰ)证明是奇函数;(Ⅱ)证明在(-∞,-1)上单调递增;(Ⅲ)分别计算和的值,由此概括出涉及函数和的对所有不等于零的实数都成立的一个等式,并加以证明
如图:在面积为1的DPMN中,tanÐPMN=,tanÐMNP=-2,试建立适当的坐标系,求以M、N为焦点且过点P的椭圆方程。
已知双曲线C 2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l的斜率取值范围,使l与C分别有一个交点,两个交点,没有交点 (2)若Q(1,1),试判断以Q为中点的弦是否存在
已知曲线C:与直线L:仅有一个公共点,求m的范围.
设椭圆的中心是坐标原点,长轴在轴上,离心率,已知点到这个椭圆上的最远距离是,求这个椭圆的方程.
已知双曲线的右准线为,右焦点,离心率,求双曲线方程.