(本小题满分14分) 已知函数,;(Ⅰ)证明是奇函数;(Ⅱ)证明在(-∞,-1)上单调递增;(Ⅲ)分别计算和的值,由此概括出涉及函数和的对所有不等于零的实数都成立的一个等式,并加以证明
已知各项均为正数的数列中,是数列的前项和,对任意,有 (1)求常数的值; (2)求数列的通项公式; (3)记,求数列的前项和。
(
(已知是实数,函数. (Ⅰ)若,求的值及曲线在点处的切线方程; (Ⅱ)求在区间上的最大值.
已知函数在区间[0,2]上的最小值为3,求a的值.