已知函数(,,为常数,).(Ⅰ)若时,数列满足条件:点在函数的图象上,求的前项和;(Ⅱ)在(Ⅰ)的条件下,若,,(),证明:;(Ⅲ)若时,是奇函数,,数列满足,,求证:.
正项数列{an}满足-(2n-1)an-2n=0. (1)求数列{an}的通项公式an. (2)令bn=,求数列{bn}的前n项和Tn.
在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB. (1)求角B的大小; (2)若a=2,△ABC的面积为,求b,c.
已知函数f(x)=(ax-a+2)·ex(其中a∈R). (1)求f(x)在[0,2]上的最大值; (2)若函数g(x)=a2x2-13ax-30,求a所能取到的最大正整数,使对任意x>0,都有2f′(x)>g(x)恒成立.
椭圆C:+=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为. (1)求椭圆C的标准方程; (2)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点,求证:直线l过定点,并求出该定点的坐标.
已知正项数列{an},{bn}满足:a1=3,a2=6,{bn}是等差数列,且对任意正整数n,都有bn,,bn+1成等比数列. (1)求数列{bn}的通项公式; (2)求Sn=++…+.