(本小题满分10分)通过点A(0,a)的直线与圆相交于不同的两点B、C,在线段BC上取一点P,使=,设点B在点C的左边,(1)试用a和k表示P点的坐标;(2)求k变化时P点的轨迹;(3)证明不论a取何值时,上述轨迹恒过圆内的一定点.
写出下列命题的“p”命题,并判断它们的真假。 (1)p:x,x+4x+4≥0;(2)p:x,x-4=0。
求直线与双曲线的两个交点和原点所构成的三角形的面积.
已知椭圆的一个焦点是(,0),且截直线x=所得弦长为,求该椭圆的方程。
过抛物线上一定点,作直线分别交抛物线于 (1)求该抛物线上纵坐标为的点到焦点的距离; (2)当与的斜率存在且倾斜角互补时,求的值,并证明直线的斜率是非零常数。
已知点A(2,8),B(x,y),C(x,y)在抛物线y=2px上,△ABC的重心与此抛物线的焦点F重合(如图)。 (1)写出该抛物线的方程和焦点F的坐标; (2)求线段BC中点M的坐标。