(本小题满分16分)给定两个长度为1的平面向量和,它们的夹角为.(1)求|+|;(2)如图(1)所示,点在以为圆心的圆弧⌒AB上运动.若其中,求的最大值?(3)若点、点在以为圆心,1为半径的圆上,且,问与的夹角取何值时,的值最大?并求出这个最大值.图(1) 图(2)
已知抛物线C的方程C:y2 ="2" p x(p>0)过点A(1,-2).(I)求抛物线C的方程,并求其准线方程;(II)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由
已知数列和中,数列的前项和记为. 若点在函数的图象上,点在函数的图象上。(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和
已知,函数(R).(1)求; (2)求的最小正周期和最大值;(3)若为锐角,且,求的值
已知直线及圆(1) 若直线l与圆C相切,求a的值;(2) 若直线l与圆C相交于A,B两点,且弦AB的长为,求a的值.
从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[60,90)分的学生比例.