已知以点C (t, )(t∈R),t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为坐标原点.(1)求证:△OAB的面积为定值;(2)设直线y= –2x+4与圆C交于点M,N若|OM|=|ON|,求圆C的方程.(3)若t>0,当圆C的半径最小时,圆C上至少有三个不同的点到直线l:y –的距离为,求直线l的斜率k的取值范围.
(本小题满分12分)已知函数的两个不同的零点为
(本小题满分12分)设关于的方程(Ⅰ)若方程有实数解,求实数的取值范围;(Ⅱ)当方程有实数解时,讨论方程实根的个数,并求出方程的解.
(本小题满分12分) 在平面直角坐标系中,为坐标原点,三点满足(Ⅰ)求证:三点共线;(Ⅱ)求的值;(Ⅲ)已知、,的最小值为,求实数的值.
(本小题满分12分)已知是奇函数(Ⅰ)求的值,并求该函数的定义域;(Ⅱ)根据(Ⅰ)的结果,判断在上的单调性,并给出证明.
( 本小题满分12分) 设函数图像的一条对称轴是直线(Ⅰ)求;(Ⅱ)求函数的单调区间及最值;